Vous êtes ici : AccueilCLASSESExercice sur les condensateurs

Vote utilisateur: 5 / 5

Etoiles activesEtoiles activesEtoiles activesEtoiles activesEtoiles actives
 
Terminale
D & C
Physique
Exercices
Bonjour ! Camerecole a une chaine Youtube, suivez le lien si vous préférez des cours en vidéo

Exercice I

Choisir la réponse exacte
1) L'espace situé entre les armatures d'un condensateur est :
a) Conducteur ;
b) Isolant ;
c) Semi-conducteur.

2) La valeur de la charge qq accumulée sur l'armature B du condensateur dont la charge de l’armature A est :
a) 10µC ;
b) -10µC ;
c) 0µC.

3) Un condensateur dont C = 4700µF a été chargé avec un courant constant I = 0,5mA pendant t = 1min. La tension à ses bornes est :
a) 30mV ;
b) ≈ 6,38V ;
c) 141µV.

4) On charge un condensateur C = 470µF avec un courant constant I = 0,1mA.
Le condensateur atteindra une tension u = 5V au bout d'un temps de :
a) 6min 48s ;
b) ≈ 2jours ;
c) 23,5s.

5) Deux condensateurs C1 = 47µF et C2 = 100µF (initialement déchargés) sont associés en série et l'ensemble est soumis à une tension.
On a alors à tout instant pour les tensions:
a) uC1uC2;
b) uC1uC2;
c) uC1=uC2.

6. On a utilisé un condensateur de capacité C = 2200µF pour emmagasiner une énergie électrique W = 58,19J. La valeur de la tension U aux bornes du condensateur est :
a) 220V
b) 230V
c) 240V

7. Un condensateur de capacité C = 1F comporte deux armatures ayant chacune une surface S séparées par un diélectrique d'épaisseur e = 0,1mm. Sachant que le diélectrique a une permittivité relative εr=5 avec ε0=136π109, la surface S des armatures est :
a) S=2,26×106m2;
b) S=6,2×106m2;
c) S=0,55×106m2.

Exercice II

L’élève Penka du lycée de Nkambé a réalisé le montage ci-dessous, aide-le à déterminer la capacité du condensateur équivalent CAB de ce circuit.
condensateur equivalent

Exercice III

KENFACK, élève de classe de terminale C au lycée de NDIANDAM veut déterminer expérimentalement la capacité C d'un condensateur, pour cela, il réalise sa charge avec un générateur de courant. Ce générateur débite un courant d'intensité I = 0,376 mA. A l’aide d'un oscilloscope, il réalise la saisie automatique de la tension uC aux bornes du condensateur en fonction du temps.
Le montage utilisé est schématisé ci-contre :
generateur de courantAide cet élève à :
1- Refaire le schéma du montage ; représenter la flèche de la tension uC, la charge q du condensateur (q>0) et le branchement de l’oscilloscope afin que l'on puisse visualiser uC.
2-A la date t = 0, on ferme K. Établir la relation entre I, C, uC et t.
3- On obtient la courbe représentant les variations de la tension uC au cours du temps : condensateur variation tension tempsDéterminer la valeur de la capacité C du condensateur.
4- La tension de claquage du condensateur est uCmax=50V.
a- Calculer la durée maximale de la charge du condensateur.
b- Déduire l’énergie électrique maximale emmagasinée par le condensateur.

Exercice IV

Le montage représenté ci-dessous permet de charger et de décharger un condensateur de capacité C dans une résistance R.
circuit de charge1.a Pour chacune de ces deux opérations, quelle doit être la position de l’interrupteur?
b. Des deux graphes (fig1 et fig2) proposés ci-dessous, lequel qui correspond à la
charge du condensateur? Justifier.
courbe charge condensateurs2. Le générateur de courant permet une charge, à intensité constante, d’un condensateur. La charge dure 40s et l’intensité du courant a pour valeur 1μA.
a. Calculer la charge du condensateur à la date 40s.
b. Quelle est la valeur de l’énergie emmagasinée par le condensateur à cette date ?
c. Calculer la capacité du condensateur.
3. Sachant que ce condensateur est plan et que l’aire des deux surfaces communes en regard est S=0,1 m2 et que l’épaisseur du diélectrique qui se trouve entre les deux plaques est e=0,02 mm.
a. Déterminer la permittivité électrique absolue ε du diélectrique de ce condensateur.
b. Déduire la permittivité relative εr du diélectrique.
On donne ε0=8,85×1012F.m

Exercice V

Le jeune OYONO OYONO du lycée de Banyo veut émerveiller ses camarade de classe, il prend un condensateur de capacité C1 = 470 µF et le charge avec la tension U1 = 24V, Prend le deuxième condensateur de capacité C2 = 1000 µF déchargé (U2 = 0V).
Il branche à présent ces deux condensateurs C1 et C2 en parallèle.
Aide le jeune élève à calculer la valeur de l'énergie W12 emmagasinée par l'ensemble C1 en parallèle à C2 , comparer W12 avec W1 + W2 et donner une explication au résultat.