Vote utilisateur: 5 / 5

Etoiles activesEtoiles activesEtoiles activesEtoiles activesEtoiles actives
 
Baccalauréat
Mathématique
A
2020
Enoncés
Bonjour ! Camerecole a un compte TikTok, suivez le lien si vous préférez des cours en vidéo

Exercice I /4 points
1.a) Résoudre dans R l’équation : x2x 2=0 0,75 pt
b) Developer (x1) (x2x2) 0,5 pt
c) En déduire l’ensemble solution dans R de l’inéquation
x32x2 x+20 1 pt
2.a) Résoudre dans R2 le système (S) 0,75 pt
{2xy=2x+4y=6
b) En déduire l’ensemble solution du système 1pt
{2exey=2ex+4ey=6

Exercice II 6 points
Le taux d’absentéisme de 800 employés d’une entreprise au cours des deux dernières années a permis de réaliser le tableau suivant :

Classe en mois [0;3[ [3;6[ [6;9[ [9;12[ [12;15[
Taux d’absentéisme 16% 37,5% 27,5% 15% 4%
Effectifs(employés)          
Effectifs cumulés croissants          
Effectifs cumulés décroissant          

1. Recopier et compléter ce tableau 1 pt
2. Tracer l’histogramme des effectifs. (Unité sur les axes abscisses 1 cm pour trois mois ; ordonnées : 1 cm pour 100 personnes) 2 pts
3. Tracer le polygone des effectifs cumulés croissants sur le graphique précèdent 1 pt
4. Tracer le polygone des effectifs cumulés décroissants sur le graphique précèdent 1 pt
5. Déterminer graphiquement la médiane de cette série 1 pt

Problème 10 points
La figure ci-dessous est la représentation graphique d’une fonction numérique f définie de R/(-1) vers R.
courbe fonctionI) Par lecture graphique
1. Déterminer f(0), f(1) et f(-2) 0,75 pt
2. Conjecturer : lim; \mathop {\lim }\limits_{x \to + \infty } f(x); \mathop {\lim }\limits_{x \to - {1^ - }} f(x) et \mathop {\lim }\limits_{x \to - {1^ + }} f(x) 1 pt
3. Écrire une équation de l’asymptote verticale 0,5 pt
4. Dresser le tableau de variation de f 1 pt
5. Reproduire la courbe (Cf) et construire dans le même repère orthonormé R = \left( {O;\vec i,\vec j} \right) la représentation graphique de la fonction g:x \mapsto \left| {f(x)} \right| 1,5 pt
Unités 1 cm
II) On suppose que f(x) = ax + b + \frac{c}{{c + 1}} avec \left( {a,b,c} \right) \in {R^3} et x différent de -1
1. Exprimer f(1), f(-2) et f(0) en fonction de a, b et c 1,5 pt
2. En déduirez que le triplet (a, b, c ) est solution du système :
\left\{ \begin{array}{l}2a + 2b + c = 4\\ - 2a + b - c = - 7\\b + c = 3\end{array} \right.
3. Parmi les triplets suivants, recopier sur votre feuille la solution du système ci-dessus : 1 pt
i) (1,1,4)
ii) (-1,1,4)
iii) (1,-1,4)
iv) (-1,-1,4)
4. En déduire que f(x) = \frac{{{x^2} + 3}}{{x + 1}} pour {x \ne - 1} 1 pt
5. Montrer que la fonction F : x \mapsto \frac{1}{2}{x^2} - x + 4\ln \left( {x + 1} \right)est la primitive de la fonction f sur \left] { - 1, + \infty } \right[ qui s’annule en 0 1 pt