Illustration
Calculons le temps mis par KENFACK
• Première phase de A à B (phase accélérée)
${a_G} = 1m/{s^2}$, $AB = 120m$
$AB = \frac{1}{2}{a_G}{t^2}$ $ \Rightarrow {t_{AB}} = \sqrt {\frac{{2AB}}{{{a_G}}}} $ $ = \sqrt {\frac{{2 \times 120}}{1}} = 15,50 s$
Car ${v_A}(t = 0) = 0m/s$ et ${x_A}(t = 0) = 0 m$
${v_B} = {a_G}t = $ $1 \times 15,5 = 15,5m/s$
• Deuxième phase (phase uniforme)
${v_{BC}} = cte = {v_B}$ $ = 15,5m/s$
${v_{BC}} = \frac{{BC}}{{{t_{BC}}}} \Rightarrow $ ${t_{BC}} = \frac{{BC}}{{{v_{BC}}}} = \frac{{80}}{{15,5}}$ $ = 5,16$
Le temps mis par KENFAK est de : $t = {t_{AB}} + {t_{BC}} = $ $15,5 + 5,15 = 20,65s$
Calculons le temps mis par Daniel
• Première phase de A’ à B’ (phase accélérée)
${a_G} = 1m/{s^2}$ et $A'B' = 100m$
$A'B' = \frac{1}{2}{a_G}{t^2}$ $ \Rightarrow {t_{A'B'}} = \sqrt {\frac{{2A'B'}}{{{a_G}}}} = $ $\sqrt {\frac{{2 \times 100}}{1}} = 14,14S$
• Deuxième phase (phase uniforme)
${v_{B'C'}} = \frac{{B'C'}}{{{t_{B'C'}}}} \Rightarrow $ ${t_{B'C'}} = \frac{{B'C'}}{{{v_{B'C'}}}} = $ $\frac{{75}}{{14,14}} = 5,30s$
• Troisième phase de C’ à D’ (phase accélérée)
${v_{C'}} = {v_{B'}} = $ ${a_G}{t_{AB}} = 1 \times 14,14$ $ = 14,14 s$
On a la loi horaire suivante
$C'D' = \frac{1}{2}{a_G}t_{C'D'}^2$ $ + {v_{C'}}{t_{C'D'}}$ ainsi $0,25{t^2} + 14,14t$ $ - 25 = 0$ avec pour seule solution positive ${t_{C'D'}} = 2s$
${t_{A'D'}} = 5,30 + $ $14,14 + 2 = 21,44s$
Le vainqueur de la compétition reste KENFACK avec 20,65s